
Psychopharmacology (2005) 181: 582–594
DOI 10.1007/s00213-005-0083-7

ORIGINAL INVESTIGATION

E. Wezenberg . R. J. Verkes . B. G. C. Sabbe .
G. S. F. Ruigt . W. Hulstijn

Modulation of memory and visuospatial processes by biperiden
and rivastigmine in elderly healthy subjects

Received: 10 March 2005 / Accepted: 23 May 2005 / Published online: 22 July 2005
# Springer-Verlag 2005

Abstract Rationale: The central cholinergic system is
implicated in cognitive functioning. The dysfunction of
this system is expressed in many diseases like Alzheimer’s
disease, dementia of Lewy body, Parkinson’s disease
and vascular dementia. In recent animal studies, it was
found that selective cholinergic modulation affects vi-
suospatial processes even more than memory function.
Objective: In the current study, we tried to replicate those
findings. In order to investigate the acute effects of cho-
linergic drugs on memory and visuospatial functions, a
selective anticholinergic drug, biperiden, was compared to
a selective acetylcholinesterase-inhibiting drug, rivastig-
mine, in healthy elderly subjects. Methods: A double-
blind, placebo-controlled, randomised, cross-over study
was performed in 16 healthy, elderly volunteers (eight
men, eight women; mean age 66.1, SD 4.46 years). All
subjects received biperiden (2 mg), rivastigmine (3 mg)
and placebo with an interval of 7 days between them.
Testing took place 1 h after drug intake (which was around
Tmax for both drugs). Subjects were presented with tests
for episodic memory (wordlist and picture memory),
working memory tasks (N-back, symbol recall) and motor

learning (maze task, pursuit rotor). Visuospatial abilities
were assessed by tests with high visual scanning compo-
nents (tangled lines and Symbol Digit Substitution Test).
Results: Episodic memory was impaired by biperiden.
Rivastigmine impaired recognition parts of the episodic
memory performance. Working memory was non-signifi-
cantly impaired by biperiden and not affected by rivas-
tigmine. Motor learning as well as visuospatial processes
were impaired by biperiden and improved by rivastigmine.
Conclusions: These results implicate acetylcholine as a
modulator not only of memory but also of visuospatial
abilities.
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Introduction

Insight into the major role of the central cholinergic system
in memory arose from the finding that cognitive deficits
are correlated with extensive cholinergic cell loss in the
brain in Alzheimer’s disease (AD). Pharmacological stud-
ies were able to show impaired cognitive performance
after blocking central cholinergic pathways by use of an-
ticholinergic drugs. Subsequent studies showed that this
process could be reversed by enhancing cholinergic func-
tion with the treatment of cholinesterase inhibitors (ChEis)
(Blokland 1995; Everitt and Robbins 1997; Muir 1997).
The type of cognitive functions modulated by the acetyl-
choline (ACh) system varies from learning and memory to
visuospatial abilities, attention and other cortical modula-
tion of sensory information by changing the signal-to-noise
ratio of neural transmission (Lucas-Meunier et al. 2003).
In contrast to animal research, human research mainly
focussed on the learning and memory modulating effects
of ACh, concentrating on the ACh receptor antagonist,
scopolamine and the ChEi physostigmine. Generally, the
findings indicate that encoding processes, and not retriev-
al processes of the declarative memory functions, are
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negatively affected by scopolamine (Atri et al. 2004;
Mintzer and Griffiths 2003), and that the administration of
physostigmine can restore the memory functioning back
to normal (Flood and Cherkin 1986; Hammond et al.
1987; Mewaldt and Ghoneim 1979).

In animal studies, more specific methods can be used
to disable the cholinergic system. Central nervous sys-
tem (CNS) cholinergic pathways can be totally destroyed
by several excitotoxic lesioning methods (Everitt and
Robbins 1997; Muir 1997; Robbins et al. 1997a; Sarter
and Bruno 1998a). Many of the early studies using ex-
citotoxic lesions in the nucleus basalis of Meynert in rats
showed a broad range of impaired performance on various
learning paradigms like the Morris water maze, delayed-
non-matching-to-position and passive avoidance tasks
(Dunnett et al. 1991; Fibiger 1991; Muir 1997). These
early toxins were not solely selective for cholinergic neu-
rons; therefore, it is interesting that most of the more recent
studies using new highly selective toxin for ACh neurons,
192 IgG-saporin, could not reproduce the earlier findings
(Baxter et al. 1995; Baxter and Gallagher 1996; De Rosa
et al. 2001; Gutierrez et al. 1999; Power et al. 2003; Torres
et al. 1994; Wenk et al. 1994). This suggests that the
selective decrease of cholinergic function might not impair
learning and memory performance (Blokland 1995). Re-
cent animal studies have shown that selective decrease of
cholinergic function markedly impaired measures of at-
tention and visuospatial performance (like a five-choice
serial reaction time task, a continuous performance test of
visual attention and an animal version of Posner’s orien-
tation task). Due to these findings, the focus of interest
in animal research has shifted from learning and memo-
ry to attentional and visuospatial functions (Muir 1997;
Voytko 1996; Voytko et al. 1994).

Data concerning the effects of ChEis in patients suf-
fering from AD, as well as Lewy body dementia (LBD),
Parkinson’s disease (PD) and vascular dementia (VaD),
show that ACh not only influences memory, but also
attention and neuropsychiatric symptoms (Corey-Bloom
2002; Lucas-Meunier et al. 2003; Poirier 2002; Sarter and
Bruno 1998b).

On the other hand, as mentioned before, in healthy vol-
unteer studies, relatively little attention has been paid
to the effects of cholinergic modulation on other than
memory-related cognitive functions, like visuospatial and
attentional abilities, and the studies that have used non-
selective cholinergic drugs (scopolamine and physostig-
mine). Nevertheless, these few studies do seem to indicate
that visuospatial processes can be impaired by anticholin-
ergic compounds and facilitated by ChEi (Curran et al.
1991; Kopelman and Corn 1988; Meador et al. 1993;
Mintzer and Griffiths 2003). In support of this view are
the results of two patient studies: one study that looked
into the effects of chronic co-administration of rivastig-
mine in schizophrenia, where it was found that rivastig-
mine lead to a significant improvement in spatial working
memory (Sharma et al. 2004). The other study looked into
the effects of physostigmine on cognition in schizotypical
personality disorder and found a positive effect also on

spatial working memory (Kirrane et al. 2001). The ques-
tion arises as to whether the same results as in the animals
can be reproduced in human healthy volunteers. We hy-
pothesized that selective cholinergic drugs as compared
to scopolamine and physostigmine would show little ef-
fect on memory performance and more on visuospatial
performance.

A variety of memory and learning tests were selected,
with and without visuospatial aspects. In addition, a set of
tests with visuospatial elements was selected with and
without memory components. The cholinergic drugs, bi-
periden and rivastigmine, were chosen as study medication.
Biperiden is a muscarinic receptor antagonist with much
higher affinity for the muscarinic 1 (M1) receptor than
scopolamine, which is rather non-selective (Guthrie et al.
2000; Jones and Shannon 2000). M1 selectivity is relevant
because the M1 receptors are primarily located in the
hippocampus and cerebral cortex. They are associated with
cognitive function and cell loss in AD (Bymaster et al.
1993; Everitt and Robbins 1997; Jones and Shannon 2000;
Mash et al. 1985).

Theoretically, a selective M1 agonist would have been
the preferred choice as comparison drug; however, most
drugs that had been taken into clinical trials have now been
discontinued due to lack of efficacy, unacceptable side
effects and poor plasma pharmacokinetics (Eglen et al.
2001). Therefore, we have chosen for a registered ChEi
rivastigmine that has proven to be effective in improving
cognition in AD and has an acceptable side effect profile
(Birks et al. 2003). In addition, it has a favourable phar-
macokinetic profile. As opposed to physostigmine, it is
relatively selective for the CNS. It primarily affects the
hippocampus and neocortex, the regions most affected by
AD (Enz et al. 1993).

Other reasons for choosing these drugs lie in their clin-
ical relevance and in the general lack of knowledge of their
cognitive effects. Biperiden is one of the drugs used to
alleviate tremors in PD and extrapyramidal symptoms
caused by antipsychotic agents (Guthrie et al. 2000). Ri-
vastigmine is used to delay and reverse cognitive aspects
of disease progress in AD and LBD (Birks et al. 2003;
Wild and Petit 2004). Both scopolamine and physostig-
mine, the drugs that are commonly used in this field of
research, are mainly used for research purposes. Their
cognitive effects are well known.

Materials and methods

Subjects

The study was approved by the local Medical Ethics
Committee. All subjects gave their informed consent be-
fore participating in the study.

To prevent ceiling effects on cognitive measures, this
study was performed in healthy elderly volunteers, because
it is known that both cholinergic and cognitive functions
decline with age and can be improved by ACh inhibitors.
Sixteen healthy elderly volunteers completed this study,
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eight men and eight women. The mean age was 66.1 years
(SD 4.46, range 60–75 years). They were all in good
physical and mental health as determined by medical
history, medical examination, ECG and laboratory exam-
ination. Mini Mental State Examinations scores were
normal (mean 28.13, SD 1.73, range 25–30). Fifteen vol-
unteers were right-handed and one was ambidextrous. The
education level varied from primary education to academic
level (primary, 3; lower, 2; intermediate, 3; higher, 6;
academic, 2).

Drug administration

A double-blind, placebo-controlled, randomised, four-way
crossover study was performed with placebo, biperiden
2 mg and rivastigmine 3 mg, and Org24448 500 mg as drug
conditions.

For biperiden peak, plasma concentrations are reached 1
to 2 h after single dose administration followed by a rapid
initial decline of the concentrations to 12% of the peak
values after 6 h, and subsequently followed by a slow
terminal elimination phase with concentrations close to or
below detection limit at 48 h (Hollmann et al. 1987). In
steady state, half-life is 26–40 h in elderly subjects. For
rivastigmine, the time to reach maximum plasma concen-
tration ranges from 0.8 to 1.2 h. In elderly healthy vol-
unteers, the plasma elimination half-life is 0.9 to 1.3 h.
Renal elimination of the drug’s metabolites is rapid and
essentially complete after 24 h. Inhibition of ChE activity
(in CSF) is significant by 1.2 h, reaches a peak by 2.4 h and
declines slowly until approximately 8.5 h (Jann et al.
2002). Org 24448 is an Ampakine, which is known to
enhance long-term potentiation, a mechanism associated
with consolidation in memory (Staubli et al. 1994). For
Org24448, the time to reach maximum plasma concentra-
tion after oral administration of Org24448 500 mg is 1.2 h.
The terminal elimination half-life is approximately 6–8 h.
Because Org 24448 is not a cholinergic compound, the
results on this drug will be reported elsewhere.

All drugs were administered in single oral doses, with a
washout of 1 week. To achieve a balanced administration
order, the drugs were randomised using a Latin-square
design (repeated four times). Testing took place 1 h after
drug intake (which was around Tmax for all drugs).

Tests, apparatus and procedure

The tests that were used in this study belong to a cognitive
and psychomotor test battery (Wezenberg et al. 2004). In
this paper, only the results concerning memory and visuo-
spatial performance are reported. The performance on
all tests was recorded by means of a digitizing tablet
(WACOM UD-1218-RE), a laptop computer, a pressure-
sensitive pen (which could also be used as a cursor) and test
forms. The x and y coordinates of the pen tip on and up to
5 mm above the digitizer were sampled with a frequency of

200 Hz and a spatial accuracy of 0.2 mm (de Jong et al.
1996).

To familiarize the subjects with the tests and procedures,
they were invited to the hospital to perform a practice
session within 1 week before the actual study days. All
tests had five equal versions for four test days and one
practice day; test versions were counterbalanced over
test days. The order of the tests as well as the relative time
to dose at the start of each test is displayed in Table 1.

Episodic memory tests

Verbal memory test

Based on the classical Auditory Verbal Learning Test
(Vakil and Blachstein 1993), a variant was made consisting
of a list of 18 words. The classic test uses 15 words; how-
ever, to prevent ceiling effects, and moreover, to make the
test very difficult and to resemble a state of dementia, a
longer wordlist was chosen. The list was presented verbally
three times, and under normal circumstances, subjects are
supposed to remember more words after each trial. Directly
after each presentation and after an interval of 5 and
30 min, subjects were asked to recall as many words as they
could remember. After the last delayed recall trial, a list of
36 words was presented from which they had to recognize
the 18 correct words. The incorrect words were distracters
and resembled the correct words in a semantic or pho-
nologic manner. The outcome measures are number of
correct scores for the three immediate recall trials, the two
delayed recall trials and the delayed recognition trial.

Picture memory

Visual memory or picture memory has been used widely
as a measure of immediate and delayed memory for the

Table 1 Order of the tests and
the relative time to drug admin-
istration at the start of each test

Only tests that will be reported
in this paper are displayed
VMT Verbal Memory Test, IR
trials immediate recall trials, DR
1st first delayed recall trial, DR
2nd second delayed recall trial,
RC recognition trial, SDST
Symbol Digit Substitution Test,
SDRT 1st first recall trial of the
SDST

Tests Relative
time after
drug intake
(min)

VMT, IR trials 60
SDST 67
SDRT 1st 69
VMT, DR 1st 72
Tangle 77
Picture memory 90
Figure Copying
Task

95

SDRT 2nd 98
VMT, DR 2nd
and RC

102

Maze learning
task

122

N-back task 132
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detection of cognitive change in all sorts of conditions.
The picture memory task used in this study was modelled
after a task used for the detection and localisation of brain
damage by Petrides and Milner (1982). That visual mem-
ory tests are also sensitive for cholinergic (and other) drug
effects has been shown by many studies (Kikuchi et al.
1999; Peretti et al. 1997; Rammsayer et al. 2000; Robbins
et al. 1997b).

An example of the test is depicted in Fig. 1. In the first
part of this test (the immediate visual recognition part),
a matrix of 16 abstract visual designs was presented, which
had to be memorized. Thereafter, a matrix of 48 designs
was presented, and the 16 original designs had to be iden-
tified by pointing them out. The second part of the test
started with the presentation of the correctly remembered
designs, which were interspersed among other designs
(again together 48 designs). Subjects were asked again
to learn these designs and to recognize them out of 48
designs, but now, only one at a time. After each choice,
the matrix was scrambled, containing the same 48 de-
signs, and the subjects had to point out the next design.
This continued until all designs had been recognized or
until two mistakes in a row had been made.

This test evaluates visual recognition and self-ordered
retrieval, and the outcome measures are number of correct
in part 1 and part 2.

Working memory tests

N-back task

For the measurement of working memory, an N-back
task was chosen that is widely used for the detection of
working memory deficits in schizophrenia (Meyer-Linden-
berg et al. 2001; Weinberger et al. 1996). In the present
version of this test, subjects were presented with a starting
circle and six possible target circles surrounding the
starting circle on the computer monitor, which reflects
the same positions as on the paper form. In the 1-back
condition, subjects had to respond to the stimulus that was
presented in the previous trial. In the 2-back condition,
subjects had to respond to the stimulus that was presented
two trials before. Both conditions had two parts with either
25 correct trials or the number that could be attained in
2-min duration.

The outcome measure is ‘movement time to reach
target’, which is faster when working memory is improved
and slower when working memory is impaired. The mea-
sure ‘distance covered to reach target’ was added as a
control variable because movement time is dependent of
the distance needed to cover. One subject did not perform
this test.

Symbol digit recall test

This test comes directly after the Symbol Digit Substitu-
tion Test (SDST), which will be discussed in the last
paragraph of this section. When subjects were finished with
the SDST, they were again presented with the symbols
from the SDST, now one at a time, and asked to point out
the corresponding numbers.

This test is based on an extended procedure of the
SDST by Kaplan et al. (1991) to measure incidental learn-
ing. The outcome measures are the number of correctly
identified symbols and the response times.

Motor learning tests (with visuospatial component)

Maze learning task

To study the effect of cholinergic modulation on motor
learning, we used the maze learning task form developed
by van Mier et al. (1993). In several studies (among one
PET study), it was shown that this task assesses motor
learning without sight (van Mier et al. 1993, 1998) (for an
example, see Fig. 2). The maze designs are cutout designs
creating a path for the pen to traverse. The maze consists
of eight line segments, with a complete path of 24 cm;
the width of the paths is 0.5 cm, the depth 0.15 cm. To
simplify decision making, the maze consists of straight
lines with 90° angles. Only two opposite direction choices
can be made at each intersection, one of which comes to a
dead end. The length of each dead end path is 0.5 cm. The
maze forms a closed loop, meaning start and end points are
the same. There are four equal versions and a practice
square. Subjects were instructed to close their eyes and find
their way in the maze and make as many loops as possible
in 2 min. They started with a practice maze for 30 s, then
three trials with the maze and afterwards another trial with
the rotated maze (subjects were told they had a new maze).

Fig. 1 Example of picture
memory test. To the left are the
16 pictures that need to be
learned. To the right are where
the 16 correct ones need to be
recognized
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This was done to control for a general increase in motor
speed instead of improved motor learning.

The outcome measure is ‘number of completed loops’ in
2 min.

Pursuit task

To measure implicit procedural learning, a computerized
version of the rotor pursuit task was used. This test is based
on the classical rotary pursuit task (Ammons 1947; Siegel
1990). It is a continuous motor task. Subjects had to follow
the movement of a large target stimulus on the computer
screen with a cursor by moving the pen over the XY tablet.
The speed of the target gradually increases when the cursor
is contained within the target but slows down quite quickly
when it is not. The target follows a spatially predictable
circular path over the screen. The outcome measures for
procedural learning are the ‘total number of rotations’ and
‘time per loop’ (i.e. one 360° tracking of the target) for the
first five loops.

Visuospatial information processing tests
(without learning)

Tangle

The tangle task is a purely visual task requiring high con-
centration for visually tracking a particular line winding
through two to four other lines.

The tangled lines were presented on the screen. The line
that had to be visually traced to the end was indicated by a
yellow square. On subsequent trials the tangles increased in
complexity; they got longer and made more 90° turns. The
paper form had a start area and five target areas, numbered
1 to 5, which reflect the maximum target areas on the
screen, starting with only three target areas as in the ex-
ample in Fig. 3.

This test is modelled after the visualisation test from the
‘kit for factor referenced cognitive tests’ of Ekstrom et al.
(1976) and French (1954). It was selected by the US NAVY
to study environmental and other time-course effects and
has good task stability and reliability (Bittner et al. 1983,
1986). The outcome measure is the number of correct trials
in 2 min.

Symbol digit substitution test

This test is a variant of the subtest from the Wechsler Adult
Intelligence Scale (WAIS) (Wechsler 1981). Subjects have
to substitute the symbols for digits 1–9 on the basis of a
given key. The outcome measure is the total number of
digits completed in 90 s.

According to Hege et al. (1997) and Lezak (1995), this
task measures many cognitive components like visuospa-
tial scanning, intermediate memory, perceptual motor
speed and speed of cognitive processing. Therefore, sub-
sequent analyses were performed to attempt to disentangle
these cognitive processes. Based on pen pressure, move-
ment trajectories were defined as either pen-up periods or
pen-down periods. This allowed for subsequent analysis
of matching times and movement (writing) times in the
SDST. For the motor component, the mean writing times
were computed. For the more cognitive component, the
mean matching times were computed. These analyses
have been previously performed by Jogems-Kosterman
et al. (2001), Sabbe et al. (1999) and van Hoof et al. (1998).

Control measures: sedation tests and adverse events

Before dose and 60 min after drug administration, sub-
jects performed several tests measuring various aspects of
sedation.

Fig. 3 Example of a simple trial in the tangle test

Fig. 2 Example of the maze test
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Neurophysiologic sedation

The measure Saccadic Eye Movements (SEM) was chosen
as neurophysiologic measure for sedation. For the saccadic
test, subjects were presented with sudden changes of target
position at random intervals. The target consists of an array
of light emitting diodes on a bar fixed at 50 cm in front of
the head support. The size of the steps was fixed at 30° (15
from middle to left–right). The outcome measure is the
overall mean peak velocity.

Behavioural sedation

As behavioural measures, Simple (SRT) and Choice
Reaction Time Test (CRT) were chosen. In the SRT, a
yellow square was presented on the monitor at random
intervals (0.5–1.5 s). Subjects were instructed to press the
response button on the response module as fast as possible
following the detection of the target. There are 20 targets in
the trial and the outcome measure is the mean reaction
time. In the CRT, the words ‘left’ and ‘right’ were pre-
sented randomly on the monitor and subjects had to press
the corresponding buttons on the response module as fast
as possible. There are 20 targets in the trial and the outcome
measure is the mean reaction time.

Subjective sedation

As a measure for subjective sedation, a Visual Analogue
Scale (VAS) was added (Bond and Lader 1974). The VAS
is a questionnaire of 16 visual analogue scales from which

three factors are derived that assesses subjective in sub-
jective alertness, calmness and contentment. Another sub-
jective control measure was the reported adverse events
(AEs). Whenever subjects reported an AE, this was re-
corded by MedDRA (6.1) coding.

Statistical analyses

Statistical evaluation (using SPSS 11 for Windows) was
performed with GLM repeated measures analysis of
variance (ANOVA) with ‘drugs’ as within-subject factor
for all tests. For the Verbal Memory Test (VMT) and
Symbol Digit Recall Test (SDRT), also the results for the
within-subject factor ‘trial’ and the interaction between
‘trial’ and ‘drugs’ were analyzed. Only the results of the
planned contrasts, placebo vs biperiden and placebo vs
rivastigmine, will be reported in the results section.

Results

The descriptive statistics of the tests are presented in
Table 2, and the results of the analysis are presented in
Table 3.

Episodic memory

Verbal memory test

As can be seen in Fig. 4, test scores gradually increased
from trial 1 to 3 (trial 1 to 3, F(2,14)=55.47, p<.001);

Table 2 Means and standard
deviations per task and drug
condition

M Mean, SD standard devia-
tions. N-back: ‘TDM’ move-
ment time to reach target,
‘TCM’ distance covered to reach
target. SDRT: STM Short Term
Memory trial, LTM Long Term
Memory trial, RT response time

Placebo Biperiden Rivastigmine

M SD M SD M SD

Picture memory task
Part 1 6.75 2.24 6.31 2.47 5.75 2.65
Part 2 5.25 1.53 4.63 1.41 4.25 1.69
Pursuit
No. of rotations 10.56 2.94 9.60 3.70 11.45 3.65
N-back
1-back TDM 0.70 0.13 0.77 0.14 0.70 0.14
1-back TCM 3.68 0.55 4.26 0.85 3.65 0.54
2-back TDM 0.74 0.23 0.79 0.16 0.72 0.17
2-back TCM 4.69 2.19 4.63 2.00 4.21 1.14
SDRT
STM (correct) 1.94 1.65 2.69 1.54 3.25 1.69
STM (RT) 3.54 0.72 4.08 1.16 3.49 0.70
LTM (correct) 2.19 1.56 1.75 1.57 2.06 1.29
LTM (RT) 3.16 0.67 3.71 1.04 3.23 1.03
Tangle
No. correct 12.56 1.32 12.50 1.46 13.13 1.15
SDST
No. correct 40.69 9.54 36.50 9.45 43.06 10.09
Matching time 1.72 0.51 2.02 0.57 1.62 0.57
Writing time 0.63 0.17 0.61 0.12 0.61 0.20
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however, from trial 1 to 3, this increase was significantly
lower for biperiden compared to placebo. Rivastigmine
scores did not improve learning compared to placebo
scores on trials 1, 2 or 3.

In the delayed recall trials, test scores declined from trial
4 to trial 5 [F(1,15)=23.13, p<.001]. In both trials, the
biperiden performance was lower compared to placebo.
Again rivastigmine did not improve recall; rather, the re-
verse was marginally significant.

In the delayed recognition trial (trial 6), the test scores
approximately returned to the level of trial 3. Biperiden
scores and also rivastigmine scores were significantly de-
creased compared to placebo.

Picture memory

The visual recognition of pictures was not significantly
decreased by biperiden in part 1 (simple visual memory) or
in part 2 (self-ordered retrieval).

As in the verbal memory test, rivastigmine did not
improve but rather impaired performance in both recogni-
tion measures.

Working memory

N-back task

Working memory as assessed by the N-back task showed
significant larger movements by biperiden in the simple
condition, but not in the more difficult condition. Fur-
thermore, a trend of impaired performance was found on
the movement times in the more difficult, but not the
simple, condition. Rivastigmine had no effect on either
measure.

Symbol digit recall test

The measure ‘number correct’ showed a trend of improve-
ment for biperiden. For rivastigmine, also a small but
significant improvement was found compared to placebo.

The measure ‘response time’ was impaired by biperiden,
whereas rivastigmine did not show any effect.

Table 3 F and p values per task and drug condition

Placebo vs
biperiden
df(1,15)

Placebo vs
rivastigmine
df(1,15)

Verbal memory test
IR (trial 1 vs 3×drugs) 12.16** <1
DR (trial 4 vs 5×drugs) 18.52*** 3.45#

RC trial 6 5.12* 5.77*
Picture memory task
Part 1 <1 4.80*
Part 2 2.250 7.06*
N-back
1-back TDM 2.28 <1
1-back TCM 6.37* <1
2-back TDM 4.32# <1
2-back TCM <1 <1
SDRT
STM (no. correct) 3.29# 9.10**
STM (response time) 7.05* <1
LTM (no. correct) <1 <1
LTM (response time) 5.72* <1
Maze learning
Trial (1–3)×drugs <1 4.93*
Trial (3–4)×drugs 1.15 5.21*
Pursuit
No. of rotations 2.88 3.49#

Time per loop 6.15* <1
Tangle
No. correct <1 4.23#

SDST
No. correct 3.52# 5.34*
Matching time 6.96* 2.53
Writing time <1 <1

Verbal Memory Test: IR immediate recall, DR delayed recall, RC
recognition. N-back: TDM movement time to reach target, TCM
distance covered to reach target. SDRT: STM Short Term Memory
trial, LTM Long Term Memory trial
#p<.10, *p<.05, **p<.01, ***p<.001

Fig. 4 Results on the Verbal Memory Test (VMT). Immediate recall results are to the left (ir trials 1–3). Delayed recall trials (dr trials 4 and
5) and recognition trial (rc trial 6) are to the right
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Motor learning

Maze learning task

As can be seen in Fig. 5, the number of completed loops
gradually increased from trial 1 to 3 (trial 1 to 3, F(1,15)=
11.01, p=.006). The improvement in performance over
trials was markedly stronger for rivastigmine than for
placebo. No effects were found for biperiden.

To test whether the results of rivastigmine reflect
improved motor speed instead of improved learning, the
results of the new maze were compared to the trials of the
old maze. If only motor speed was improved by ri-
vastigmine, these performances should also have been
improved. However, there was no interaction between trial
(new vs old) × drug [F(3,10)<1], which indicates that it
appears justified to conclude that rivastigmine improved
motor learning in this task.

Pursuit test

The measure ‘total number of rotations‘ appeared to show
deterioration in performance for biperiden; however, this
effect did not reach significance. There was a trend of
improvement in performance for rivastigmine.

The results of the procedural learning measure ‘time per
loop’ can be seen in Fig. 6. The time per loop was in-
creased for biperiden compared to placebo; no effects were
found for rivastigmine. There was no interaction between
drug × loop (1–5), indicating that the difference between
biperiden and placebo was constant over loops.

Visuospatial processes

Tangle

Visuospatial processes, as measured by the number of
correctly solved tangles, were not affected by biperiden and
tended to be improved after rivastigmine intake.

Symbol digit substitution test

The outcome measure ‘number correct’ showed a trend
of impaired performance for biperiden and a significant
improved performance for rivastigmine. Subsequent anal-
yses showed a significant increase in matching time for
biperiden and no effects in writing time. Rivastigmine
showed a non-significant improvement in both matching
and writing time.

Control measures: sedation tests, AEs and sources
of individual variation

As can be seen in Table 4, sedation, as assessed by the peak
velocity of the SEM and the ERT and CRT tests, did not
differ between drug conditions, neither did the subjective
feelings as measured by the VAS.

The AEs are displayed in Table 5. To assess the impact
of the reported AEs in the drug conditions, all analyses
were repeated with AE (yes or no) as a between-subject
factor. This was repeated for only the nausea complaints on
rivastigmine performance. No significant negative effects
were found for either measurement.

To control for the effect of sources of individual
variation, additional analysis were performed with age
and MMSE scores as covariates. The effects of age and
MMSE scores were very limited and could not explain the
current group findings for both drugs.

Discussion

To our knowledge, this is the first study to show that ri-
vastigmine improves visuospatial processes, besides some
aspects memory in healthy elderly subjects.

The present study found that the M1 antagonist biperi-
den caused clear-cut negative effects on measures of ep-
isodic memory and working memory, whereas the negative
effects on visuospatial measures were less strong and less
clear. For rivastigmine, marked positive effects were found
on motor learning and visuospatial processes, and noFig. 5 Results for maze learning test on trials 1–3 and the new maze

for placebo, biperiden and rivastigmine

Fig. 6 Results for the Pursuit Test. Time to perform a loop for the
first five loops is depicted here
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positive and even negative effects on measures of episodic
memory.

Modulation of cognitive processes: memory

First we summarize the results concerning the effects of
the drugs on memory: For biperiden, clear negative ef-
fects were found on the measures for episodic memory in
immediate recall, delayed recall and recognition of verbal
material. Visual recognition performance was unaffected.
For rivastigmine, no positive effects were found in mea-
sures of episodic memory, and surprisingly, a negative ef-
fect was found in the recognition of both verbal and visual
material. Working memory, measured by the N-back task,
showed moderate negative effects on accuracy and re-
sponse speed for biperiden, whereas rivastigmine did not
affect performance. In short-term memory (SDRT), biperi-
den showed again negative effects, as it did on other mem-
ory tasks, it prolonged response times, and in this test,
rivastigmine showed improved accuracy on the same mea-
sure. However, this effect is very small, and in contrast
to the other memory tasks, therefore, it is not unlikely to
be an accidental finding. In motor learning, biperiden im-
paired movement time over all trials in the pursuit task;
however, as this was equal over all loops, it is more likely

that attentional impairments caused this decrement than
impaired learning processes. For rivastigmine, interest-
ingly, positive effects were found that actually did affect
motor learning. In the maze task, a relative increase in
number of loops was found over consecutive trials, whereas
performance dropped to baseline when a new maze was
offered.

Overall biperiden showed results that are in agreement
with the literature on other anticholinergic drugs in humans
as it impaired episodic memory performance (Mintzer and
Griffiths 2003). These findings have relevance for clinical
practice because this drug is commonly prescribed to al-
leviate extrapyramidal side effects caused by antipsychotic
medication; we therefore suggest to use caution in choos-
ing the dose as it clearly impairs cognitive functioning.

Our results of a negative impact of rivastigmine on
episodic memory, on the other hand, are in sharp contrast to
most of the literature on the effects of the same or other
ChEi in the AD populations and healthy volunteers, where
generally, positive results have been found (Bentley et al.
2003; Birks et al. 2003). In AD patients, this positive effect
is mostly measured by a change in ADAS-cog score. The
ADAS-cog is a test battery used to measure changes in the
core features of the cognitive impairments in AD, and has a
memory, praxis and language domain.

There are a few other studies that failed to find positive
effects of ACh inhibitors, but they were performed in other
populations than AD patients. One of those studies found
that in patients with schizotypic personality disorder,
administration of physostigmine did not improve perfor-
mance in a verbal learning test, but only improved per-
formance in a spatial performance test (Kirrane et al. 2001).
Another study that could not find positive effects used
a tone-shock conditioning reinforcement paradigm with
physostigmine. The author suggested that an overactive
cholinergic system leads to increased processing of be-

Table 4 Overview of results of control measures

Placebo Biperiden Rivastigmine

M SD M SD F M SD F

SEMpv T0 349 37 353 41 343 37
Tmax 336 29 332 26 1.14 334 35 <1

ERT T0 290 25 288 28 288 32
Tmax 297 44 305 51 1.13 301 50 <1

CRT T0 375 51 370 42 372 47
Tmax 375 53 375 56 <1 374 57 <1

VAS T0 43.75 13.20 47.56 12.56 45.00 12.50
Alertness (more–less) Tmax 47.00 18.96 53.93 8.54 <1 58.56 12.54 1.64
VAS T0 39.81 15.05 39.38 14.24 40.44 13.24
Calmness (more–less) Tmax 41.81 14.96 41.81 14.64 <1 40.19 15.14 <1
VAS T0 38.94 17.56 42.06 11.45 39.19 17.18
Contentedness (more–less) Tmax 38.44 16.66 41.88 14.57 <1 49.13 6.09 4.10#

The reported F values are drug×time interactions. T0 is the baseline measurement. Tmax is the measurement of the drug effects at the time of
maximum efficacy. SEMpv, peak velocity in degrees per second. ERT and CRT, time in milliseconds. VAS, in centimetres, ‘more–less’
indicate the scaling of the VAS items. 0 indicates more alertness and 100 indicate less alertness
M Mean, SD standard deviations
#p<.10

Table 5 Overview of adverse events (AE)

Total no. of
subjects with
AE’s

No. of AEs

Somnolence Dizziness Nausea
(vomiting)

Placebo 5 5 0 0
Biperiden 7 4 3 0
Rivastigmine 9 4 1 4 (3)
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haviourally irrelevant stimuli and thereby did not improve
conditioning (Thiel et al. 2002).

What also should be taken into consideration when
trying to find an explanation for differential results between
the effects of ACh in AD patients vs our healthy volunteers
is that the CNS cholinergic pathways work differently in
both groups. Evidence was found in a study by Nordberg et
al. (1989) that tacrine (an early ChEi) enhanced ACh
release in AD brain tissue, whereas it decreased ACh
release in normal control tissue in post-mortem brains.
These results were attributed to the normal working of
negative feedback mechanisms (mediated via presynaptic
muscarinic autoreceptors) that is defective in AD brains. It
could be that this mechanism is responsible for the neutral
and negative effects that were found in the current study,
although it does not explain the positive effects found on
visuospatial performance.

Another possible explanation might be that acetyl-
cholinesterase inhibitors have an inverted U-shape function
on cognitive performance as dopaminergic compounds
(Cohen et al. 2002). In that case, subjects would only re-
spond in a positive manner if they would receive the right
dose of rivastigmine. Subjects might have had the optimum
dose at the beginning and end of the test battery as the
positive results at those times indicated. However, the dose
might have been too high between 90 and 110 min after
drug administration, when the tests were performed where
negative results were found. An ‘overdose’ could then have
caused the impairments in the two episodic memory tests.
Unfortunately, we have no serum concentrations to control
for individual differences in absorption or metabolism,
which might substantiate this explanation.

Modulation of cognitive processes:
visuospatial abilities

Improved visuospatial performance was found for rivas-
tigmine, as it tended to increase the number of correct
scores in the tangles task. No impairment was found for
biperiden on this measure. The SDST measures ‘number
correct’ and ‘matching time’ have, next to intermediate
memory aspects, a strong visuospatial scanning compo-
nent. Results on these measures showed impaired perfor-
mance for biperiden and improved performance for
rivastigmine. The results of the other tests with (visuo-)
spatial components, like the tangle, pursuit and the maze
learning task, all showed at least a tendency of improved
performance after rivastigmine. This suggests that the
results on the SDST were more likely to be caused by the
modulation of visuospatial processes than by changes in
memory processes. This idea is supported by the findings
that the direction of effects in the visual memory tests (both
drugs either impair or have no effect) is different from the
direction of effects on the SDST (biperiden impairs per-
formance and rivastigmine enhances it). Following this
interpretation, the negative effects of biperiden and the
positive trends and effects of rivastigmine can be attributed
to changes in visuospatial scanning performance.

In general, the data regarding the cholinergic modula-
tion of the visuospatial performance are in line with the
results of the few other human studies that looked into the
effects of other cholinergic drugs on similar processes. In
one study, scopolamine impaired performance on visuos-
patial tasks, although mixed effects were found on mea-
sures of visuospatial memory (Meador et al. 1993). Other
studies showed that physostigmine generally increased re-
action times and accuracy performance in spatial attention
tasks (Bentley et al. 2003, 2004; Witte et al. 1997). The
positive results on motor learning and visuospatial per-
formance are also in line with the results of animal exper-
iments (for reviews, see Gold 2003 and Power et al. 2003).

Are the effects of rivastigmine dependent on type
of neural pathway?

Overall, there seems to be a division in type of tests where
rivastigmine showed positive results vs negative results on
cognitive performance. The tests showing positive effect
all hold a visuospatial component, whereas the tests that
showed a negative impact all hold a recognition memory
component. This might have a relation to the ‘two-systems
theory of visual perception’, which is an adaptation from
the theory about ‘what and where pathways’ in the brain.
The original theory was postulated by Ungerleider and
Mishkin (1982) and started with the finding that the out-
puts from the primary visual cortex follow two general
pathways. The first projects to the inferior temporal cortex
are a region associated with object recognition (the ventral
pathway). The other projects to the posterior parietal cortex
are a region associated with spatial perception (the dorsal
pathway). The authors proposed that these paths process
fundamentally different types of information. The ventral
path is associated with object perception and recognition.
The dorsal path is implicated in identifying the location of
an object. The more recent version of the ‘two-systems
theory of visual perception’ also makes a division, now
between a ‘what path’ and a ‘how path’ in information
processing. The what path processes information that is
needed to consciously identify objects (e.g. form, color),
whereas the how path processes information that is needed
for online movement control (e.g. location in space) and is
assumed not to be consciously accessible (Bridgeman
2000; Knoblich and Kircher 2004). It appears that the
negative results on recognition of words and pictures fit in
the what path processing and the positive results on motor-
learning and visuospatial performance in the how path
processing. This would imply that how path processing
would be more sensitive to increased levels of ACh than
the what path processing. The question remains whether
this theory offers an explanation for ACh modulation in
total or of specifically the effects of ACh increase in visual
information processing because it cannot explain the
findings of biperiden or the results found for non-visual
(in this case, verbal) material.
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Limitations

It should be noted that the present study has some lim-
itations. It might be argued that the memory tests were too
difficult for this age group. Usually, wordlists of ten items
are used in neuropsychological research in elderly subjects
(Bouma et al. 1998; Lezak 1995). We used 18-item word-
lists and a set of 16 pictures. This was done on the one hand
to make learning more difficult, as it is in dementia, and on
the other hand to prevent possible ceiling effects.

Furthermore, there were no specific attentional tests in
the test battery, so we could not control for specific changes
in attention. From other studies using drugs with well-
known effects on attention next to memory, we know that
impaired attention shows up on tests of sedation (see the
review of Buffett-Jerrott and Stewart 2002 on benzodiaze-
pines). We tried to control this by looking at several
sedation measures, and because these did not show any
effects of cholinergic modulation, we thought it is safe to
conclude that no big attentional effects were present in our
study.

Another issue is that in this study, only one dose of each
drug was used. A multiple-dose study would give more
insight, as the chosen doses may have been too low or too
high to find the effects on the tests used in this study. It
should be noted, however, that we did choose dosages that
are known to have a clinical relevant effect.

Conclusion

In summary, the results of the present study demonstrated
that a single dose of 2 mg of biperiden showed clear neg-
ative effects on both episodic and working memory, and
that a single dose of 3 mg of rivastigmine showed both
positive and negative effects on memory measures and
only positive effects on visuospatial performance in
healthy elderly volunteers.

The conclusion that can be drawn from these findings is
that the modulation of visuospatial processes in humans
does not totally resemble the animal findings, which might
result from the many differences between rat and human
neurophysiology. It did point us in the direction of a new
topic in ACh research: the modulation of visuospatial pro-
cesses. We therefore advise further research into this
specific cognitive domain with ACh inhibitors in AD pa-
tients, as it may be expected to find the most positive
effects in that domain.

To finish, we would like to repeat our concern about the
use of biperiden to alleviate extra pyramidal side effects in
clinical practice; due to its impairing cognitive effects, we
suggest to be careful in choosing the dose.
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